Optical dephasing of coherent intersubband transitions in a quasi-two-dimensional electron gas

I. Waldmüller, J. Förstner, S.-C. Lee, and A. Knorr
Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin, 10623 Berlin, Germany

M. Woerner, K. Reimann, R. A. Kaindl, and T. Elsaesser
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany

R. Hey and K. H. Ploog
Paul-Drude-Institut für Festkörperelektronik, 10117 Berlin, Germany

(Received 22 December 2003; published 13 May 2004)

We present a microscopic many-particle theory for the dephasing of coherent intersubband excitations in semiconductor quantum wells including carrier-carrier and carrier-phonon scattering and light propagation effects. The contributions of many-particle processes are nonadditive and thus cannot be treated separately. It is shown that due to nondiagonal correlation contributions, scattering rates alone cannot be taken as a measure for the dephasing of the intersubband polarization. Surprisingly, radiative damping is found to be important even at moderate carrier densities. Calculated absorption spectra are in excellent agreement with experiments on a high-quality sample.

DOI: 10.1103/PhysRevB.69.205307 PACS number: 78.67.De, 73.21.Fg

I. INTRODUCTION

The dynamics of optical excitations of semiconductors on ultrafast time scales gives insight into the basic microscopic interactions of carriers. In particular, optically induced coherence between two electronic bands and its subsequent decay, i.e., optical dephasing, reflects the formation and relaxation of many-particle correlations. In this context, the renormalization of the single-particle properties of Bloch electrons and optical dephasing via electron-electron and electron-phonon interaction has been attributed to the interaction of the optically generated carriers in momentum space. It is a widespread belief that every scattering event a particle undergoes will result in a loss of all phase coherences in which the particle participates. As has been pointed out for interband transitions from the valence to the conduction band [Fig. 1(a)], this simplified picture completely neglects possible interference phenomena between various scattering mechanisms, the nondiagonal correlations between particles in the language of many-particle theory. Such interference phenomena are also significant in quasi-two-dimensional (2D) semiconductor nanostructures where quantum confinement leads to the formation of subbands within the valence and conduction bands. We focus here on dipole-allowed intersubband (IS) transitions between two subbands in the conduction band.

Coherent optical IS polarizations are connected with a quantum mechanical superposition of the envelope wave functions of the subbands involved. When the subbands are parallel [Eq. (7) and Fig. 1(b), solid curves], and in the limit where the Coulomb and Fröhlich matrix elements approach the two-dimensional case [see Eq. (10)], the quantized electron motion perpendicular to the layers is completely decoupled from the free motion in the quantum well plane. In this case, intersubband electron-electron and electron-phonon interactions do not affect IS coherence. This can be seen by considering a coherent polarization p_{k}^{1} between subbands 1 and 2 at some in-plane wave vector k. Such a coherent polarization means that the particle is in a superposition state $\alpha|1,k\rangle + \beta|2,k\rangle$. Scattering processes that have identical matrix elements for the two subbands [in the approximation of Eq. (10) this is the case for all intrasubband scattering processes] scatter this particle to a new coherent superposition $\alpha|1,k'\rangle + \beta|2,k'\rangle$ at another in-plane wave vector k'. This destroys the coherent polarization at k, but at the same time generates a new coherent polarization with identical magnitude and phase at k'. Since the two subbands are parallel, the newly generated coherent polarization is at the same frequency as the destroyed polarization. Therefore the macroscopic polarization, which is obtained by summing over all k, remains unchanged.

In real quantum wells, there are deviations from Eqs. (7) and (10), and thus both intrasubband and intersubband scattering mechanisms have a destructive influence on IS coherence. Intrasubband scattering influences IS coherence only because of these deviations. Its influence is considerably smaller than expected from the scattering rates. The deviations originate (i) from the three-dimensional character of the intersubband and intrasubband scattering matrix elements and (ii) from the difference in the curvature of the subbands [Fig. 1(b), dashed curve], due to the conduction band

![Fig. 1.](image)

FIG. 1. (a) Interband transitions: transitions between conduction and valence band, (b) IS transitions: transitions between two conduction subbands with equal (solid curve) or with different (dashed curve) effective masses.
nonparabolicity.4 The latter effect is quite pronounced in InAs/AlSb quantum wells,5 but as will be shown in the following should not be neglected in GaAs/AlGaAs quantum wells either. In addition to dephasing, radiative coupling of IS polarizations, e.g., in multiple quantum wells (MQW’s), leads to emission and exchange of transverse radiation fields, i.e., a mechanism of radiative damping.

Recent theoretical work on IS excitations can be divided into different groups: calculations of the IS absorption line shape with regard to a simultaneous treatment of (i) the different curvatures of the subbands and longitudinal Coulomb interaction between electrons,6–9 (ii) radiative coupling10,11 using a phenomenological susceptibility, and (iii) dephasing models considering only diagonal dephasing contributions.12 A comparison of experiment and theory for IS plasmon line-shapes and linewidths by including the different curvatures of the subbands, Coulomb interaction, radiative coupling, and the major dephasing contributions [electron-electron and electron-phonon (LO) scattering] self-consistently without phenomenological parameters.14 We examine the validity of the developed theory by a detailed comparison with absorption measurements of a high-quality sample and show that only a consistent description of all processes can explain the observed line shapes.

II. EXPERIMENTAL SETUP

Since radiative coupling depends on the actual geometry of the sample, before presenting the theoretical framework we describe first the experimental setup which we use for the absorption measurements. Our sample is a multiple quantum well sample consisting of 51 GaAs quantum wells, each with width $L = 10$ nm, and separated by Al$_{0.35}$Ga$_{0.65}$As barriers, each with a thickness of $D - L = 20$ nm (Fig. 2). The center of each barrier is n-type δ-doped with Si, resulting in an electron concentration of $n_e = 5 \times 10^{10}$ cm$^{-2}$ in each quantum well.

The sample was processed into a prism [cf. Fig. 1(c) in Ref. 15] and mounted in the total-reflection geometry (single-pass prism geometry) shown in Fig. 2. This achieves a strong coupling between the p-polarized light and the intersubband transition dipoles. Midinfrared absorption spectra were measured using a Biorad FTS 45-A Fourier transform spectrometer. The samples were mounted inside a closed-cycle cryostat equipped with broadband KRS-5 windows to allow measurements at different sample temperatures. A small aperture with razor blade edges ensures that light is only transmitted through the sample facets. Furthermore, a broadband wire-mesh polarizer allows to obtain polarization-dependent spectra both for p polarization (the electric field has a component perpendicular to the quantum well layers) and for s polarization (electric field parallel to the quantum well layers). This serves to clearly identify intersubband transitions, since they are dipole-allowed only for p polarization.

III. THEORETICAL FRAMEWORK

The absorption spectrum of the sample in the experimental setup described above (see Fig. 2) is given by $A(\omega) = 1 - |E_{\text{out}}|^2/|E_{\text{in}}|^2$. The calculation of the absorption spectrum is composed of two parts. The first part involves the determination of the source of the electromagnetic emission in each quantum well, i.e., the dipole density $P^{(n)}$ [the superscript (n) labels the quantum well]. The second part consists of computing the field $E^{(n)}$ in each quantum well and the outgoing field E_{out}. The equations for the dipole densities and the fields are coupled and must be solved self-consistently.

To determine the fields, a nonlocal Green’s-function formalism10,16 is applied to a system of N electronically uncoupled quantum wells. The local field $E^{(n)}$ inside quantum well n consists not only of the incident field E_{in}, but also of the field emitted by the dipole densities in all wells.17 Expressions for these fields and the outgoing field E_{out} are given in Appendix A. They show explicitly their dependence on the dipole densities $P^{(n)}$. The interaction of the emitted fields with the dipole densities represents the influence of radiative interaction on the absorption spectrum. The interaction of the dipole density in a given well with the field emitted in the same well is the self-interaction.

To evaluate $P^{(n)}$, the dipole density driven by the total field $E^{(n)}(z, \omega)$ in quantum well n, we define

$$P^{(n)}(z, \omega) = \frac{1}{A} \sum_{k} \left[\mathcal{P}^{(n)21}(\omega) \right] d^{(n)}_{21}(z) \quad (1a)$$

and

$$\int_{(\omega)} \mathcal{B}^{(n)}_{\omega,\omega'}(\omega') \cdot E^{(n)}(z', \omega) dz' \quad (1b)$$
The starting point for this derivation is the Robertson equation in the rotating wave approximation. Here \(a_{k1}^\dagger (a_{k1}) \) denotes the creation (annihilation) operator for an electron in subband \(1 \). \(A \) is the area. \(\int dz' d\omega \chi_\omega^{(n)}(z) \) is the dipole matrix element, \(\chi_\omega^{(n)}(\omega) \) is the nonlocal susceptibility tensor in dyadic form, and \(\chi_\omega^{(i)}(\omega) \) is the general linear susceptibility in quantum well \(n \) (see Appendix C). \(\chi_\omega^{(i)}(\omega) \) is defined in terms of \(p_k^{(n)21} \) and can be evaluated once the intersubband coherences are determined.

To calculate the intersubband coherences we start by deriving the equation of motion (see Appendix B) for \(p_k^{(n)21} \). The starting point for this derivation is the Robertson equation\(^\text{20}\) and the Hamiltonian of the system. In the Hamiltonian, we include terms for the energies of the noninteracting electrons and LO phonons, the carrier-field interaction, the Coulomb interaction of the electronic system, and the electron–LO-phonon interaction. A detailed description of the Hamiltonian is given in Appendix B. Because of the Coulomb [Eq. (B1c)] and electron-phonon [Eq. (B1d)] interactions, the intersubband coherence is coupled to higher-order operator terms yielding an infinite hierarchy of equations. This hierarchy must be truncated at some stage in order to obtain a closed set of equations.\(^\text{1,18}\) For simplicity we give here only a schematic outline of the equation of motion for \(p_k^{(n)21} \) and refer the interested reader to Appendix B. [Note that from now on the index \(n \) in \(p_k^{(n)21} \) will be suppressed for conciseness.]

The equation of motion for the intersubband coherence is written as

\[
\frac{d}{dt} p_k^{(n)21} = \frac{d}{dt} p_k^{(n)21|0, \text{cf}} + \frac{d}{dt} p_k^{(n)21|\text{MF}} + \frac{d}{dt} p_k^{(n)21|\text{corr}}.
\]

In addition to free-carrier and carrier-field contributions (0, cf), we include first- and second-order carrier-carrier and carrier-phonon contributions. While the first-order (mean-field, abbreviated MF in the following) contributions (exchange self-energy, excitonic enhancement, and depolarization effect\(^\text{7,8,21}\)) renormalize the free-carrier and carrier-field contributions, the second-order (correlation, abbreviated as corr) contributions yield a dephasing of the macroscopic polarization. These correlation contributions are quite lengthy and are given in Appendix B. They consist of diagonal terms which depend on the intersubband coherence \(p_k^{21} \) at momenta \(k \), and nondiagonal terms which depend on the intersubband coherence at different momenta \(k + k' \), and thus couple different \(k \) states of the intersubband coherence:

\[
\frac{d}{dt} p_k^{21|\text{corr}} = - \frac{\pi}{\hbar} \Xi_d p_k^{21} + \frac{\pi}{\hbar} \sum_{k'} \Xi_{dd}(p_k^{21}, p_{k'+k}^{21}).
\]

The diagonal terms can be decomposed into in- and out-scattering rates:

\[
\Xi_d p_k^{21} = \Gamma_d p_k^{21} = \frac{1}{2} \sum_{i=1,2} (\Gamma_i^{\text{out}} + \Gamma_i^{\text{in}}) p_k^{21}.
\]

Using the semiconductor Boltzmann collision rate

\[
\frac{d}{dt} f_k^{\text{corr}} = - f_k^{\text{corr}} \Gamma_{d}^{\text{out}} + (1 - f_k^{\text{corr}}) \Gamma_{d}^{\text{in}},
\]

we can identify the inverse of the diagonal damping rate \(\Gamma_d \) in the polarization dynamics with the \(T_2 \) time known from two-level atomic systems,\(^\text{1} \), i.e., \((\Gamma_d)^{-1} = T_2 \). The nondiagonal terms yield a momentum dependent nondiagonal damping. As will be shown in the following section, the nondiagonal correlation contributions play a significant role for the homogeneous width of the IS absorption line since they compensate strongly for the diagonal counterparts, even more strongly than for the interband case.\(^\text{2} \)

IV. THEORETICAL RESULTS

For the numerical simulations we use a square-well potential model with a barrier height of \(V_0 = 350 \text{ meV} \) and consider small signal absorption and quasiequilibrium conditions, i.e., we describe the electron distribution \(f_k^z = \langle a_k^z a_{k1} \rangle \) by a Fermi-Dirac distribution for a given carrier density and temperature and assume \(f_k^z = 0 \). Furthermore, we assume that the phonons can be treated as a bath for the dynamical electronic system. Thus we describe the phonon distribution \(n_{q} \) by a thermal Bose function.

As we will show in the following, the line shapes and line widths of IS absorption spectra are due to (i) carrier-carrier and carrier-phonon interactions (strongly dependent on the three-dimensional character of the Coulomb and Fröhlich matrix elements), (ii) different effective masses, and (iii) radiative interaction with the transverse field. We examine the influence of these contributions and their interplay by focusing on them separately. Note that the mean-field contributions are included in all calculations.

First, we assume the same effective mass for both subbands \(m_1 = m_2 = 0.0665m_0 \), i.e., the energy difference between states \(k \) in each subband

\[
\epsilon_2 - \epsilon_1 = \text{const},
\]

and consider only a single quantum well of the MQW sample described above. By considering a single quantum well, we exclude the impact of radiative interaction with the transverse field on the line shape of the absorption spectrum. We thus investigate the influence of pure carrier-carrier and carrier-phonon interactions. Considering the Coulomb and Fröhlich formfactors [cf. Eq. (B2)]

\[
\mathcal{F}_{q}^{abcd} = \int dz' \mathcal{F}_{q}^{*}(z') \int dz \mathcal{F}_{q}^{*}(z') \mathcal{F}_{q}(z') e^{-|q||z-z'|},
\]

\[
\mathcal{F}_{q}^{ab} = \int dz' \mathcal{F}_{q}^{*}(z) \mathcal{F}_{q}(z') e^{iQ_{\perp}z},
\]

we see that in the limit
vanish. Thus the linear susceptibility electron-phonon interaction to the macroscopic polarization action among the carriers and the total contribution of the by renumbering the summation indices in Eqs. (3a)–(5) that in this case the total contribution of the Coulomb interaction among the carriers and the total contribution of the electron-phonon interaction to the macroscopic polarization vanish. Thus the linear susceptibility $\chi(\omega)$, extracted from the IS coherence, is that of noninteracting single-particle excitations (solid curve, scaled in height). Neglecting the nondiagonal contributions (dashed curves) yields a strong overestimation of the linewidth.

$$e^{-|q| z} = 1 \quad \text{and} \quad e^{i Q z} = 1,$$

(9)

the intersubband formfactors vanish and the intrasubband formfactors all have the same value:

$$\mathcal{F}_{\mathbf{q}}^{ab} = \delta_{a,b}, \quad \mathcal{F}_{\mathbf{Q}}^{ab} = \delta_{a,b}.$$

(10)

If we approximate the matrix elements using Eq. (10), we neglect the three-dimensional character of the matrix elements. Taking the sum over all k contributions one can show by renumbering the summation indices in Eqs. (B3a)–(B5) that in the case that the total contribution of the Coulomb interaction among the carriers and the total contribution of the electron-phonon interaction to the macroscopic polarization vanish. Thus the linear susceptibility $\chi(\omega)$, extracted from the IS coherence, is that of noninteracting single-particle excitations (solid curve, scaled in height). Neglecting the nondiagonal contributions (dashed curves) yields a strong overestimation of the linewidth.

$$e^{-|q| z} = 1 \quad \text{and} \quad e^{i Q z} = 1,$$

(9)

the intersubband formfactors vanish and the intrasubband formfactors all have the same value:

$$\mathcal{F}_{\mathbf{q}}^{ab} = \delta_{a,b}, \quad \mathcal{F}_{\mathbf{Q}}^{ab} = \delta_{a,b}.$$

(10)

If we approximate the matrix elements using Eq. (10), we neglect the three-dimensional character of the matrix elements. Taking the sum over all k contributions one can show by renumbering the summation indices in Eqs. (B3a)–(B5) that in the case that the total contribution of the Coulomb interaction among the carriers and the total contribution of the electron-phonon interaction to the macroscopic polarization vanish. Thus the linear susceptibility $\chi(\omega)$, extracted from the IS coherence, is that of noninteracting single-particle excitations (solid curve, scaled in height). Neglecting the nondiagonal contributions (dashed curves) yields a strong overestimation of the linewidth.

$$e^{-|q| z} = 1 \quad \text{and} \quad e^{i Q z} = 1,$$

(9)

the intersubband formfactors vanish and the intrasubband formfactors all have the same value:

$$\mathcal{F}_{\mathbf{q}}^{ab} = \delta_{a,b}, \quad \mathcal{F}_{\mathbf{Q}}^{ab} = \delta_{a,b}.$$

(10)

If we approximate the matrix elements using Eq. (10), we neglect the three-dimensional character of the matrix elements. Taking the sum over all k contributions one can show by renumbering the summation indices in Eqs. (B3a)–(B5) that in the case that the total contribution of the Coulomb interaction among the carriers and the total contribution of the electron-phonon interaction to the macroscopic polarization vanish. Thus the linear susceptibility $\chi(\omega)$, extracted from the IS coherence, is that of noninteracting single-particle excitations (solid curve, scaled in height). Neglecting the nondiagonal contributions (dashed curves) yields a strong overestimation of the linewidth.

$$e^{-|q| z} = 1 \quad \text{and} \quad e^{i Q z} = 1,$$

(9)

the intersubband formfactors vanish and the intrasubband formfactors all have the same value:

$$\mathcal{F}_{\mathbf{q}}^{ab} = \delta_{a,b}, \quad \mathcal{F}_{\mathbf{Q}}^{ab} = \delta_{a,b}.$$

(10)

If we approximate the matrix elements using Eq. (10), we neglect the three-dimensional character of the matrix elements. Taking the sum over all k contributions one can show by renumbering the summation indices in Eqs. (B3a)–(B5) that in the case that the total contribution of the Coulomb interaction among the carriers and the total contribution of the electron-phonon interaction to the macroscopic polarization vanish. Thus the linear susceptibility $\chi(\omega)$, extracted from the IS coherence, is that of noninteracting single-particle excitations (solid curve, scaled in height). Neglecting the nondiagonal contributions (dashed curves) yields a strong overestimation of the linewidth.

$$e^{-|q| z} = 1 \quad \text{and} \quad e^{i Q z} = 1,$$

(9)

the intersubband formfactors vanish and the intrasubband formfactors all have the same value:

$$\mathcal{F}_{\mathbf{q}}^{ab} = \delta_{a,b}, \quad \mathcal{F}_{\mathbf{Q}}^{ab} = \delta_{a,b}.$$

(10)

If we approximate the matrix elements using Eq. (10), we neglect the three-dimensional character of the matrix elements. Taking the sum over all k contributions one can show by renumbering the summation indices in Eqs. (B3a)–(B5) that in the case that the total contribution of the Coulomb interaction among the carriers and the total contribution of the electron-phonon interaction to the macroscopic polarization vanish. Thus the linear susceptibility $\chi(\omega)$, extracted from the IS coherence, is that of noninteracting single-particle excitations (solid curve, scaled in height). Neglecting the nondiagonal contributions (dashed curves) yields a strong overestimation of the linewidth.
carrier and carrier-phonon interactions (including the three-
dimensional character of the matrix elements), (ii) the differ-
effective masses, and (iii) radiative interaction with the
transverse field. The absorption lines are almost Lorentzian-
like. With increasing temperature, the absorption peak shifts
(≈3 meV between 100 and 300 K) to lower energies. As
stated before, the nondiagonal correlation contributions have
the effect of compensating the diagonal ones to a large ex-
tent. Neglecting the nondiagonal correlation contributions in
this case, the linewidth varies between 20 meV at 100 K and
50 meV at 300 K (not shown). Comparing the broadening
due to the different dephasing contributions [Fig. 6(b)], we
see that carrier-carrier and carrier-phonon interactions are
nonadditive dephasing mechanisms, due to interference ef-
effects of the diagonal and nondiagonal correlation contribu-
tions. This observation is similar to that made for energy-
relaxation processes in quantum-cascade lasers.24 Note that
the strength of these interference effects depends on both
carrier density and the difference in the effective masses.
Comparing the linewidth including cc and cp correlations of
a single quantum well only (curve c) and all 51 wells (curve
d), we find that even for the moderate density considered
here, radiative damping leads to an additional broadening of
ΔE_{rad}≈1 meV, which is about 12% (at 300 K) to 25% (at
100 K) of the final linewidth.

V. COMPARISON WITH EXPERIMENTAL RESULTS

In Fig. 7 we present intersubband absorption measure-
ments on the MQW sample described in Sec. II at three
different temperatures. One can clearly see the nearly sym-
metric IS absorption line around 100 meV. With increasing
temperature one observes a shift towards lower energy, a
decrease of the amplitude, and an increase of the linewidth.
As can be seen in direct comparison with the theoretical
results [Figs. 5 and 6(a)], only the full calculation [Fig. 6(a)]
yields satisfactory agreement with the experiment (line
shape, linewidth, peak position, and height). For this sample,
at low temperatures the linewidth is determined to approxi-
mately equal amounts by the lifetime in subband 2, by intra-
subband scattering processes, and by the radiative coupling.

Due to the fact that the random-phase approximation
(RPA) used in the derivation of the equation of motion for
the intersubband coherence is valid in the low-density re-

FIG. 6. (a) Simultaneous inclusion of cc-/cp-correlation con-
tributions and different effective masses of the MQW sample. (b)
Comparison of the linewidth with regard to different dephasing con-
tributions: linewidth of a single quantum well with (a) only cc
correlations, (b) only cp correlations, (c) cc and cp correlations; (d)
linewidth of full theory, i.e., with radiative interaction.

VI. CONCLUSION

In conclusion, we have presented a microscopic many-
particle theory for the dephasing of coherent intersubband
excitations in semiconductor quantum wells including
carrier-carrier, carrier-phonon scattering, and light propaga-
tion effects. By including first the different dephasing mecha-
nisms separately and then simultaneously, we investigated
their complex interplay. Furthermore, we analyzed the im-

FIG. 7. Measured IS absorption A(ω) spectra on the MQW
sample as explained in the text.
of (i) the incident field, (ii) the reflection of the incident field at the interface, (iii) the local contribution, (iv) rightward-wave contributions from all planes $z' < z$, (v) directly generated leftward waves from all planes $z' > z$, and (vi) leftward-wave contributions from the reflection of all rightward waves at the interface. Contributions (iii)–(vi) are due to the polarizations in the quantum wells:

$$\begin{align*}
E^{(n)}(z, \omega) &= E_{\text{in}} \hat{p}_z e^{i q_z z} + r_{12}^p \hat{p}_z e^{- i q_z z} + \\
&+ \sum_{m=1}^{N} \int_{(m)} d z' \mathcal{G}^{0,R}_{z',z'}(\omega) P^{(m)}(z', \omega). \quad (A1)
\end{align*}$$

Here the incident wave is assumed to be a p-polarized plane wave and r_{12}^p is the corresponding Fresnel coefficient. $\mathcal{G}^{0,R}_{z',z'}(\omega)$ denotes the retarded Green’s-function tensor in dyadic form with regard to total reflection at the medium-1/medium-2 interface:

$$\mathcal{G}^{0,R}_{z',z'}(\omega) = -\mu_0 \omega \left\{ \begin{array}{c} (\hat{\gamma}_z z' - \hat{\gamma}_z z) e^{i q_z z'} \\
-2 i q_z \end{array} \right\} \cdot \left(\begin{array}{c} \hat{p}_e \hat{p}_e \Theta(z - z') + \left(\hat{\gamma}_y \hat{p}_e - \hat{\gamma}_y \hat{p}_e \right) \Theta(z' - z) \end{array} \right) + \\
\frac{e^{- i q_z (z' - z)}}{2 i q_z} r_{12}^p \hat{p}_e \hat{p}_e,$$

(A2)

where $\hat{p}_e = (\mp q_z \hat{x} + q_n \hat{z})/q_z$ and $q_n = q |\hat{n} + q \hat{z}$ are the relevant vectors. The wave-vector projections perpendicular and parallel to the well layers are given by $q_n = \omega \sqrt{\varepsilon_e \mu_0} \cos \theta$ and $q \parallel = \omega \sqrt{\varepsilon_e \mu_0} \sin \theta$. μ_0 denotes the optical background permittivity, μ_0 the permeability of free space, Θ the Heaviside unit step function, and δ the Dirac δ function. To obtain the absorption, $A(\omega) = 1 - |E_{\text{out}}(\omega)|^2/|E_{\text{in}}(\omega)|^2$, we insert Eq. (A2) and Eq. (1b) in Eq. (A1) and let the observation point z be located in space ($z < 0$) which yields the outgoing (leftward) field:

$$\begin{align*}
E^{(n)}(z, \omega) &= e^{- i q_z z} \left\{ \begin{array}{c} r_{12}^p E_{\text{in}} \hat{p}_e - \mu_0 \omega \sum_{m=1}^{N} \int_{(m)} d z' \\
\times d z'' \left[e^{i q_z z'} \left(-2 \hat{\gamma}_y \hat{p}_e \right) + e^{- i q_z z'} r_{12}^p \hat{p}_e \right] \end{array} \right\} \cdot \left(\begin{array}{c} \hat{\gamma}_z \hat{\gamma}_z \Theta(z - z') \end{array} \right) + \\
&\frac{e^{- i q_z (z' - z)}}{2 i q_z} r_{12}^p \hat{p}_e \hat{p}_e (\omega) \cdot E^{(m)}(z', \omega). \quad (A3)
\end{align*}$$

APPENDIX B: IS COHERENCE

To determine the IS coherence $\rho_{q}^{\text{ab}}(\omega)$, which yields the dipole density $P^{(n)}(z, \omega)$, the source of the electromagnetic emission in quantum well n [cf. Eq. (1a)], we need to consider the system Hamiltonian.

In our model, the total Hamiltonian in second quantization is given by $H = H_0 + H_{\text{cf}} + H_{\text{cc}} + H_{\text{cp}}$, where the Hamiltonian of the noninteracting Bloch electrons and phonons is represented by H_0, the field-carrier interaction by H_{cf}, the Coulomb interaction of the electronic system by H_{cc}, and the electron-phonon interaction by H_{cp}:

$$H_0 = \sum_{a,k} \varepsilon_{ak} a_{ak}^\dagger a_{ak} + \sum_{Q} \hbar \omega_{1Q} b_{1Q}^\dagger b_{1Q}, \quad (B1a)$$

$$H_{\text{cf}} = \sum_{a,b,k} \int d z d_{ab}(z) \cdot E(z,t) a_{ak}^\dagger a_{bk}, \quad (B1b)$$

$$H_{\text{cc}} = \frac{1}{2} \sum_{a,b,c,d,k,k',q} \hat{\psi}_{ab}^\dagger \hat{\psi}_{cd}^\dagger a_{ak} q_{bk'} e^{i q_{bk}' - q_{bk}} a_{ck'} a_{dk} + H.\text{a}. \quad (B1c)$$

$$H_{\text{cp}} = \sum_{a,b,k} \left[\frac{\varepsilon_{ak} b_{ab} q_{bk} q_{bk} - \varepsilon_{ak} q_{bk} q_{bk} - \varepsilon_{ak} q_{bk}}{8 \varepsilon_{ak} b_{ab} q_{bk} - \varepsilon_{ak} q_{bk} \cdot \varepsilon_{ak} q_{bk}} \right] + H.\text{a}. \quad (B1d)$$

In Eqs. (B1a)–(B1d) the indices a, b, c, and d are subband indices, k, k', and q denote 2D electron wave vectors, and Q is the 3D phonon wave vector. ε_{ak} denotes the energy of an electron in subband a with wave vector k, $\hbar \omega_{1Q}$ the LO phonon energy, $b_{1Q}^\dagger (b_{1Q})$ the creation (annihilation) operator for a phonon with the 3D wave vector Q. The unscreened Coulomb and Fröhlich coupling matrix elements are given by

$$\mathcal{F}_{q}^{\text{abcd}} = \mathcal{F}_{q}^{\text{abcd}} = \frac{\varepsilon_{a}^2}{2 \varepsilon_{<}} \mathcal{F}_{q}^{\text{abcd}} =$$

$$\mathcal{F}_{q}^{\text{abcd}} = \int d z \xi_{a}^\dagger (z) \xi_{a}(z) \int d z' \xi_{b}^\dagger (z') \xi_{b}(z') e^{- i |q||z - z'|},$$

$$\mathcal{F}_{q}^{\text{abcd}} = \mathcal{F}_{q}^{\text{abcd}} = \int d z \xi_{a}^\dagger (z) \xi_{a}(z) e^{- i Q_{\perp} z}.$$

Here, $V = AL$ denotes the normalization volume, ξ_{a} is the envelope function in the confined direction, $\varepsilon_{<}$ denotes the static and $\varepsilon_{<}$ the optical dielectric permittivity.

Using the Robertson equation to derive the equation of motion for the intersubband coherence, the free-carrier and carrier-field contributions, i.e., the contributions due to H_{0} and H_{cf}, are easily obtained as

$$\frac{d}{dt} \rho_{0}^{21}(a_{ak}^\dagger a_{ak}) = i \frac{\varepsilon_{k}^2 - \varepsilon_{k}^2}{\hbar} p_{k}^{21} \quad (B3a)$$

$$+ i \frac{\varepsilon_{k}^2}{\hbar} \int d z E(z,t) \cdot d_{23}(z) [f_{k} - f_{k}] \quad (B3b)$$

They consist of the transition energy, Eq. (B3a), and the electric-dipole interaction energy, Eq. (B3b). $f_{k} = \langle a_{ak}^\dagger a_{ak} \rangle$ denotes the electron distribution. The inclusion of the carrier-carrier [Eq. (B1c)] and carrier-phonon [Eq. (B1d)] interactions yields an infinite hierarchy involving higher-order density matrices. Similar to Ref. 18, we use a correlation expansion to truncate this hierarchy. We start with the carrier-carrier interaction and factorize the two-particle density matrices into single-particle density matrices which yields the first-order or mean-field contributions:
\[
\frac{d}{dt} p_{k}^{(2)}|_{\text{corr}} = -\frac{\pi}{\hbar} \Xi_{d}(p^{(2)}_{k}) + \frac{\pi}{\hbar} \sum_{k'} \Xi_{nd}(p^{(2)}_{k+k'}), \tag{B5}
\]

which can be decomposed into diagonal terms dependent on the IS coherence \(p^{(2)}_{k} \) and nondiagonal terms, which couple IS coherences at different wave vectors. In the following we use the Markovian and second-order Born approximation and keep only terms that are linear in the IS coherence. With these approximations the diagonal part of the correlation contribution is given as the sum of the effects of carrier-phonon scattering and of carrier-carrier scattering

\[
\Xi_{d}(p^{(2)}_{k}) = \Gamma_{d}^{\text{cp}} p^{21}\left[p^{21}_{k} - \frac{1}{2} \sum_{i=1,2} \left(\Gamma_{d}^{\text{cp}} + \Gamma_{d}^{\text{cc}} \right) p^{21}_{k} \right], \tag{B6}
\]

with

\[
\Gamma_{d}^{\text{cp}} = 2 \sum_{q} \left[\delta \left(\epsilon_{k} + \epsilon_{k+q} - \hbar \omega_{LO} \right) g_{q}^{11} \left(n_{q} - 1 \right) \right] f_{k+q}^{1} \right] \times \left\{ \left(n_{q} + 1 \right) \right\} \right] \right]\right\},
\]

\[
\Gamma_{d}^{\text{cc}} = 2 \sum_{k,q} \left[\delta \left(\epsilon_{k} + \epsilon_{k+q} - \hbar \omega_{LO} \right) g_{q}^{11} \left(n_{q} - 1 \right) \right] f_{k+q}^{1} \right] \times \left\{ \left(n_{q} + 1 \right) \right\} \right\},
\]

Here and in the next equation we give only the terms for subband \(i = 1 \), the terms for \(i = 2 \) are obtained by exchanging the subband indices 1 and 2.

The nondiagonal part of the correlation contribution consists of the following terms:

\[
\sum_{k} \Xi_{nd}(p_{k}^{21}) = \sum_{i=1,2} \left[\sum_{q} \Gamma_{nd}^{\text{cp}} \right] + \sum_{k,q} \Gamma_{ndl}^{\text{cc}} p_{k+q} - \sum_{k'} \Gamma_{ndl}^{\text{cc}} p_{k'}^{21}, \tag{B7}
\]

with the abbreviations

\[
\Gamma_{nd}^{\text{cp}} = \delta \left(\epsilon_{k} + \epsilon_{k+q} - \hbar \omega_{LO} \right) g_{q}^{11} \left(n_{q} + 1 \right) \right] f_{k+q}^{1} \right] \times \left\{ \left(n_{q} + 1 \right) \right\} \right\},
\]

\[
\Gamma_{ndl}^{\text{cc}} = \delta \left(\epsilon_{k} + \epsilon_{k+q} - \hbar \omega_{LO} \right) g_{q}^{11} \left(n_{q} + 1 \right) \right] f_{k+q}^{1} \right] \times \left\{ \left(n_{q} + 1 \right) \right\} \right\},
\]

with

This lowest order of the hierarchy contains the exchange self-energy, Eqs. (B4a) and (B4b), the excitation contribution, Eq. (B4c), and the depolarization effect, Eq. (B4d), which renormalize the free-carrier and carrier-field contributions. These contributions and their interplay have been investigated quite thoroughly in Refs. 6–9 and 26. We therefore refer the reader to these papers. Note that, because in our approach the response to the total (longitudinal and transverse) classical field is calculated, the depolarization contribution (identical with the longitudinal field) must not be included in the material equation of motion [Eq. (3)], otherwise this effect would be counted twice. Next we include the carrier-phonon interaction, where we assume that we can treat the phonons as a bath for the dynamical electronic system. As has been shown in Ref. 19, the first-order contributions of the carrier-phonon interaction, which are obtained by factorizing the phonon-assisted density matrices without considering correlations between carriers and phonons, vanish for the phonon bath considered here. The next order in the hierarchy is obtained by including the derivations from the factorization of the two-particle density matrices and the phonon-assisted density matrices, respectively.19 This yields the second-order or correlation contributions

\[
\frac{d}{dt} p_{k}\left[\text{corr} \right] = -\frac{\pi}{\hbar} \Xi_{d}(p^{(2)}_{k}) + \frac{\pi}{\hbar} \sum_{k'} \Xi_{nd}(p^{(2)}_{k+k'}), \tag{B5}
\]

(\text{B4b})

(\text{B4c})

(\text{B4d})
\[\Gamma^{1,cc}_{\text{nd}2} = \sum_{k'} \left[\delta(e_{k}^{1} - e_{k'}^{1}) - e_{k}^{2} - e_{k'}^{2} - e_{k}^{+} + e_{k'}^{+} \right] \]
\[\times V_{q}^{2222}(2V_{q}^{1111} - V_{q}^{1111})(f_{k}^{1}(1 - f_{k}^{2})(1 - f_{k'}^{1}) + f_{k'}^{1}(1 - f_{k}^{2})(1 - f_{k'}^{1}) + f_{k}^{1}(1 - f_{k'}^{2})(1 - f_{k'}^{1})) \]
\[\Gamma^{1,cc}_{\text{nd}3} = \sum_{q} \left[\delta(e_{k}^{1} + e_{k}^{2} - e_{k}^{q} - e_{k}^{+} + e_{k}^{+}) \right] \]
\[\times V_{q}^{1212}(2V_{q}^{1111} - V_{q}^{1111})(f_{k}^{1}(1 - f_{k}^{2})(1 - f_{k}^{1}) + f_{k}^{1}(1 - f_{k'}^{2})(1 - f_{k}^{1})) \]
\[\Gamma^{1,cc}_{\text{nd}3} = \sum_{q} \left[\delta(e_{k}^{1} + e_{k}^{2} - e_{k'}^{q} - e_{k}^{+} + e_{k}^{+}) \right] \]
\[\times V_{q}^{1212}(2V_{q}^{1111} - V_{q}^{1111})(f_{k}^{1}(1 - f_{k}^{2})(1 - f_{k}^{1}) + f_{k}^{1}(1 - f_{k'}^{2})(1 - f_{k}^{1})) \]

Note that in contrast to Eqs. (1a) and (B1), where the sum over the spin indices is absorbed in the sum over the wave vectors, in Eqs. (B4) and (B5) the summations over the spin indices have already been performed and thus only the wave vector \(k \) includes a spin index.

We include the effect of screening on the electron-electron Coulomb interaction in the following manner. For interactions which involve only intrasubband transitions, i.e., interactions represented by \(V_{q}^{1111} \), \(V_{q}^{2222} \), and \(V_{q}^{1112} \), we replace the unscreened Coulomb interaction \(V_{q}^{iiij} \) and \(V_{q}^{ijij} \) with
\[\frac{V_{q}^{iiij} + V_{q}^{ijij}}{D} \]
and
\[\frac{V_{q}^{ijij}}{D}, \]
where \(\{i,j\} = \{1,2\}, \{2,1\} \) and
\[\frac{V_{q}^{ijij}}{D} = (V_{q}^{1111})^{2} - V_{q}^{1112} V_{q}^{2222}. \]
\[D = 1 - V_{q}^{1111} V_{q}^{1111} - V_{q}^{2222} V_{q}^{2222} - V_{q}^{1112} V_{q}^{1112}. \]

In the static, long-wavelength limit, \(\Pi^{i} = \frac{1}{\hbar} \int d\mathbf{d}_{ab}(z) \cdot \mathbf{E}^{(n)}(z, \omega) \).

APPENDIX C: DIPOLE DENSITY

The dipole density \(p^{(n)}(z', \omega) \) is determined by the sum of the IS coherences at all momenta \(p^{(n)}(z') = \int d\mathbf{d}_{ab}(z') \cdot \mathbf{E}^{(n)}(z', \omega) \).

where the linear susceptibility \(\chi^{(n)} \) is independent of the electric field
\[\chi^{(n)}(z, \omega) = \frac{p^{(n)}(z')}{E^{(n)}(z, \omega)} \]
\[\frac{1}{\hbar} \int d\mathbf{d}_{ab}(z) \cdot \mathbf{E}^{(n)}(z, \omega) \]
\[= \frac{1}{\hbar} \mathbf{E}^{(n)}(z, \omega) \int d\mathbf{d}_{ab}(z) \mathbf{E}^{(n)}(z, \omega) \]

In this notation \(\hat{\mathbf{E}}^{(n)}(z, \omega) \) denotes the IS coherence obtained by approximating \(\int d\mathbf{d}_{ab}(z) \mathbf{E}^{(n)}(z, \omega) \mathbf{E}^{(n)}(z, \omega) \mathbf{d}_{ab}(z) \) in Eq. (B3b) where \(z_{0} \) is the center of quantum well \(n \). Using Eq. (C1) we can rewrite Eq. (1a) and obtain the dipole density \(\mathbf{P}^{(n)}(z', \omega) \) as a function of the local field \(\mathbf{E}^{(n)}(z, \omega) \) as given in Eq. (1b).
In general, the linewidth is influenced both by intrinsic dephasing processes of the coherent IS polarization and by imperfections of the actual sample like alloy disorder, well width fluctuations, and interface roughness. Because of the high perfection of the growth techniques used, today’s high-quality samples have only very small structural inhomogeneities with a negligible influence on the linewidth. Since the theoretical results are compared with experiments on such high-quality samples, we do not include scattering due to interface roughness and impurities here.

The random-phase approximation is based on the assumption that the kinetic energy is much greater than the Coulomb interaction energy between the electrons. This assumption is valid at high densities since the kinetic energy goes as $1/r_s^2$, while the potential energy goes as $1/r_s$, where r_s is a measure of the electron separation. [See G. Mahan, Many-particle Physics, 3rd ed. (Kluwer/Plenum, New York, 2000), p. 296.] For this reason, the RPA is often said to hold only at high densities. However, at high temperatures the kinetic energy increases, and the validity of the RPA extends to low densities. [H. Haug and S. Schmitt-Rink, Prog. Quantum Electron. 9, 3 (1984), p. 35].

