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We present an analytic solution for the magnetic field of a bar-shaped permanent magnet. Assuming
a constant magnetization, we derive expressions for the stray field in three dimensions. The analytic
solutions can be readily applied to field calculation problems for magnetic force microscopy
simulations without the need for finite element methods. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1883308g

I. INTRODUCTION

Micro- and nanomagnetic systems often consist of pat-
terned magnetic films of rectangular shape. Due to shape
anisotropy, the small single domain magnets behave like
uniaxial bar magnets. The analytic solution for the magnetic
field of a ferromagnetic material of highly symmetrical
shape, like a sphere or a cylinder, is a classical textbook
problem of magnetostatics.1,2 The magnetic fields of more
complex geometries are derived numerically employing nu-
merical micromagnetic solvers.3 So far, analytic expressions
for the demagnetization factor of uniaxial bar magnets were
deduced,4–6 and the interaction fields for a three-dimensional
array of ferromagnetic cubes were calculated.7 Unfortu-
nately, no analytic expressions are given for the magnetic
field of a bar magnet, which are especially useful for quan-
titative magnetic force microscopysMFMd simulations, since
they give access to the precise magnetic field values along
with their derivatives.8 They are the basis for fast and accu-
rate computations of the force interaction.9 Here we present
an analytic solution for the magnetic field of a bar magnet,
deduced from the Maxwell equations.

II. DERIVATION AND SOLUTION

The fundamental equations of magnetostatics are= ·B
=0 and=3H = j f, neglecting time derivatives, wherej f is
the current density of the free charges. The magnetic flux
densityB and the magnetic field are linked by the material
equationB=m0·sH +M d, wherem0 andM are the permeabil-
ity and the magnetization, respectively.

The geometry of the bar magnet, for which we assume a
constant magnetization, is shown in Fig. 1. The magnetic
material is defined within a volumeV=huxuøxb, uyuøyb, uzu
øzbj. Without loss of generality, the magnetization is chosen
along they axis: M =M0·ey. For simplicity, j f equals zero.

The magnetic field can be described introducing a scalar
field F:

Hsr d = − =r · Fsr d, s1d

resulting in the Poisson equation for the scalar magnetostatic
potential with the solution

Fsr d = −
1

4p
E =r i

·M sr id

ur − r iu
d3r i . s2d

A simpler expression forF is derived making use of Gauss’
law and due to the localization ofM in V:

Fsr d = −
1

4p
=r ·E M sr id

ur − r iu
d3r i . s3d

The symmetry suggests to treat the problem in Cartesian
coordinatesr =sx,y,zd. Inserting the magnetization in Eq.s3d
and integrating over the cuboid yields

Fsx,y,zd = −
M0

4p

]

]y

3E
−xb

xb E
−yb

yb E
−zb

zb dxidyidzi

Îsx − xid2 + sy − yid2 + sz− zid2
.

s4d

By integrating Eq.s4d one obtains the analytic expres-
sions for the magnetic field components of the bar magnet,
given in Eqs.s5d–s7d. A detailed deduction is presented in the
Appendix. By choosing the center of the magnetized volume
to be in the origin of the coordinate system, the components
of the magnetic field can be expressed as a sum of terms with
alternating sign. A displacement of the magnetized volume
by r a=sxa,ya,zad is achieved by transformingr → r +r a. The
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FIG. 1. Illustration of the integration geometry of the bar magnet. The
magnetizationM is along they axis, the dimensions of the magnetized
volume are 2xb,2yb, and 2zb.
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expressions are not defined in the corners of the cuboid, i.e.,
for x= ±xc, y= ±yc, andz= ±zc. The derivative of the mag-
netic field componentHy is not continuous at certain points
as well, due to the appearance of the absolute value. It has to
be noted that these problems are not relevant for the pro-
posed applications.

III. DISCUSSION

The calculated magnetic field of the bar magnet with
xb=4, yb=10, zb=2 and a constant magnetization in the
spositived y direction is shown in Fig. 2. Three slices of the

magnetic field in every dimension at the positionsxc=2xb,
zc=2zb, yc=−2yb are presented as indicated in the sketch on
top of the figure. Every cut is showing a two-dimensional
vector plot of the magnetic in-plane components together
with the image of the respective out-of-plane component.
The in-plane field strength is visualized by the length of the
arrows and the gray level of the vectors, and the underlying
gray scale images correspond to the magnitude of the out-of-
plane component. The maximum out-of-plane values are
white or black, depending on the direction of the vector par-
allel or antiparallel to the base vectors of the coordinate sys-
tem.

Hxsx,y,zd =
M0

4p
o

k,l,m=1

2

s− 1dk+l+mlnhz+ s− 1dmzb + Îfx + s− 1dkxbg2 + fy + s− 1dlybg2 + fz+ s− 1dmzbg2j , s5d

Hysx,y,zd = −
M0

4p
o

k,l,m=1

2

s− 1dk+l+mfy + s− 1dlybgfx + s− 1dkxbg
uy + s− 1dlybuux + s− 1dkxbu

3arctanH ux + s− 1dkxbu · fz+ s− 1dmzbg
uy + s− 1dlybu ·Îfx + s− 1dkxbg2 + fy + s− 1dlybg2 + fz+ s− 1dmzbg2J , s6d

Hzsx,y,zd =
M0

4p
o

k,l,m=1

2

s− 1dk+l+mlnhx + s− 1dkxb + Îfx + s− 1dkxbg2 + fy + s− 1dlybg2 + fz+ s− 1dmzbg2j s7d

The presented analytic solution applies to a sample with
constant magnetization. For instance, this is the case for a
system with remanent magnetizationMr close to saturation
magnetizationMs. Our approach yields an error that in-
creases with the differenceDM =Mr −Ms between remanent
magnetization and saturation magnetization. For small differ-
encesDM, the relative errors of the components of the mag-
netic stray field are approximately given byDM /Ms.

For comparing the derived analytic expressions with nu-
merical results, we calculated the magnetic flux densityB of
a bar magnet along a linex=z on its surfacesy=ybd as de-
scribed in Ref. 10. The magnetization wasM0=870 kA/m
and the dimensions of the permanent magnet 20 mm
340 mm320 mm. Figure 3 shows the resultant magnetic
flux densities obtained by a finite element methodsfrom Ref.
10d and by employing Eqs.s5d–s7d. Our analytic expressions
do not allow the continuous computation of the magnetic
flux density on the surface of the magnet, because of the
undefined corner points.11 Therefore, we performed the cal-
culation in the near vicinitysy=yb+« ;«=10−6ybd of the sur-
face.

Furthermore, we compared the results obtained from the
analytic expressions with a calculation performed with the
bar magnet calculator from Integrated Engineering
Software.12 Using the same geometry as in Fig. 1 we ob-
tained coinciding resultsssee Table Id.

IV. SUMMARY

In summary, we present a derivation of the components
of the magnetic field of a permanent magnet with cuboidal
geometry. We compare the calculated field values with nu-
merically obtained data. The analytic solution is the basis for
quantitative MFM, as the magnetic stray field of the sample
and their derivatives can be calculated fast and accurately.
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APPENDIX
By transforming] /]y→−] /]yi in Eq. s4d and integrat-

ing with respect toyi, we obtain the integrand in its integra-
tion limits

F = −
M0

4p
E

−xb

xb E
−zb

zb F 1
Îsx − xid2 + sy + ybd2 + sz− zid2

−
1

Îsx − xid2 + sy − ybd2 + sz− zid2Gdxidzi . sA1d

By taking Eq.s1d into account, we derive forHx a sum of
four terms due to the integration limits in thex and they
direction
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Hx = −
]

]x
F =

M0

4p fIx+xb

y+yb − Ix−xb

y+yb − Ix+xb

y−yb + Ix−xb

y−ybg , sA2d

with

Ix±xb

y±yb =E
−zb

zb dzi

Îsx ± xbd2 + sy ± ybd2 + sz− zid2
. sA3d

EquationsA3d can be integrated with respect tozi resulting
in Eq. s5d. The structure of the expressionsHz and Hx is
symmetric inx andz due to the choice of the magnetization
in the y direction. The deduction of the expression forHz is
achieved by changing the integration order compared to the
integration leading toHx.

For the Hy component the expression remains compli-
cated. With Eqs.s1d and sA1d we obtain

FIG. 2. Magnetic field of a bar magnet: the three plots are cuts through the
three-dimensional vector field at the positionsxc=2xb, zc=2zb, and yc=
−2yb, respectively. These positions are indicated with respect to the bar
magnet in the sketch on the top.

FIG. 3. Comparison of the resultant magnetic flux density along a linex
=z on the surfacesy=ybd of a bar magnet. Dots: finite element methodscf.
Ref. 10d and solid line: analytic expression.

TABLE I. Comparison of the components of the magnetic stray field calculated from Eqs.s5d–s7d sASd for the
cuboidsxb,yb,zbd=s4,10,2d with a remanent magnetization of 796 kA/m at positionr =sx,y,zd with the values
obtained by a finite element calculationsFEMd available from Ref. 12.

x y z BxsmTd BysmTd BzsmTd

1.1xb 1.1yb 1.1zb
112.814 59.737 86.680 AS
112.811 59.723 86.679 FEM

2xb 2yb 2zb
7.268 8.330 3.892 AS
7.268 8.330 3.892 FEM

10xb 10yb 10zb
39.413310−3 58.473310−3 19.740310−3 AS
39.413310−3 58.473310−3 19.734310−3 FEM

1.1xb 1.1yb 0
180.916 114.796 0 AS
180.916 114.765 0 FEM

2xb 2yb 0 8.400 9.935 0 AS
8.400 9.935 0 FEM

10xb 10yb 0
42.985310−3 65.197310−3 0 AS
42.985310−3 65.197310−3 0 FEM
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Hysx,y,zd = −
]

]y
Fsx,y,zd =

M0

4p
E

xb

xbE
−zb

zb H y + yb

fsx − xid2 + sy + ybd2 + sz− zid2g3/2 −
y − yb

fsx − xid2 + sy − ybd2 + sz− zid2g 3
2
Jdxidzi

=
M0

4p
E

−zb

zb

·H y + yb

sy + ybd2 + sz− zid2F x + xb

Îsx + xbd2 + sy + ybd2 + sz− zid2
−

x − xb

Îsx − xbd2 + sy + ybd2 + sz− zid2G
−

y − yb

sy − ybd2 + sz− zid2F x + xb

Îsx + xbd2 + sy − ybd2 + sz− zid2
−

x − xb

Îsx − xbd2 + sy − ybd2 + sz− zid2GJdzi .

This integral is still analytic and the result is given in Eq.s6d.
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