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Calculation of the magnetic stray field of a uniaxial magnetic domain
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We present an analytic solution for the magnetic field of a bar-shaped permanent magnet. Assuming
a constant magnetization, we derive expressions for the stray field in three dimensions. The analytic
solutions can be readily applied to field calculation problems for magnetic force microscopy
simulations without the need for finite element methods2@5 American Institute of Physics
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I. INTRODUCTION 1 v s
d ri. (2)

Micro- and nanomagnetic systems often consist of pat- o 4
terned magnetic films of rectangular shape. Due to shape . . . . . ,
anisotropy, the small single domain magnets behave Iiké1 stlrgr?(lje;Szﬁgefﬁéolréiﬁzsﬂgirxﬂe?nm\i king use of Gauss
uniaxial bar magnets. The analytic solution for the magnetic '
field of a ferromagnetic material of highly symmetrical 1 M (r;)
shape, like a sphere or a cylinder, is a classical textbook @(r)z—EVr f
problem of magnetostati&sz. The magnetic fields of more
complex geometries are derived numerically employing nuThe symmetry suggests to treat the problem in Cartesian
merical micromagnetic solversSo far, analytic expressions coordinates =(x,y,z). Inserting the magnetization in E)
for the demagnetization factor of uniaxial bar magnets werend integrating over the cuboid yields
deduced;® and the interaction fields for a three-dimensional
array of ferromagnetic cubes were calculatetnfortu- d)(x,y,z):—%i

d3ri. (3)
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nately, no analytic expressions are given for the magnetic 4 dy

field of a bar magnet, which are especially useful for quan- X (Yo (Z dxdy.dz

titative magnetic force microscogiFM) simulations, since xf f f J > ' > >
they give access to the precise magnetic field values along Yo I -2 VX=X)H (Y= yi)* + (2-2)

with their derivative€ They are the basis for fast and accu- (4)
rate computations of the force interactibhlere we present

an analytic solution for the magnetic field of a bar magnet, By integrating Eq.(4} one obtains the analytic expres-
deduced from the Maxwell equations. sions for the magnetic field components of the bar magnet,

given in Egs(5)—(7). A detailed deduction is presented in the
Appendix. By choosing the center of the magnetized volume
to be in the origin of the coordinate system, the components
of the magnetic field can be expressed as a sum of terms with
alternating sign. A displacement of the magnetized volume
by r,=(X,,Ya,Zy) is achieved by transforming—r +r,. The

Il. DERIVATION AND SOLUTION

The fundamental equations of magnetostatics &r&
=0 andV X H =j;, neglecting time derivatives, wheie is
the current density of the free charges. The magnetic flux
densityB and the magnetic field are linked by the material (x,¥,2)
equationB=ugy-(H+M), whereu, andM are the permeabil-
ity and the magnetization, respectively. P

The geometry of the bar magnet, for which we assume a : r
constant magnetization, is shown in Fig. 1. The magnetic

material is defined within a volum¥={|x| <Xy, |y| <V, |Z g

<z,}. Without loss of generality, the magnetization is chosen A T ¢

along they axis:M =M;-g,. For simplicity,j; equals zero. M —
The magnetic field can be described introducing a scalan2 ’

field @: % Caviz) = 2Ve
H(r) ==V, &), (1)

resulting in the Poisson equation for the scalar magnetostatir 2Xp
potential with the solution

FIG. 1. lllustration of the integration geometry of the bar magnet. The
magnetizationM is along they axis, the dimensions of the magnetized
dElectronic mail: roman@pdi-berlin.de volume are 2,2y, and 2,
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expressions are not defined in the corners of the cuboid, i.emagnetic field in every dimension at the positioRs 2xy,
for x=%x., y=1y,, andz==z. The derivative of the mag- z.=2z, y.=—2y, are presented as indicated in the sketch on
netic field componenk, is not continuous at certain points top of the figure. Every cut is showing a two-dimensional
as well, due to the appearance of the absolute value. It has t@ctor plot of the magnetic in-plane components together
be noted that these problems are not relevant for the prowith the image of the respective out-of-plane component.
posed applications. The in-plane field strength is visualized by the length of the
arrows and the gray level of the vectors, and the underlying
gray scale images correspond to the magnitude of the out-of-
plane component. The maximum out-of-plane values are
The calculated magnetic field of the bar magnet withwhite or black, depending on the direction of the vector par-
xp=4, V=10, z,=2 and a constant magnetization in the allel or antiparallel to the base vectors of the coordinate sys-
(positive y direction is shown in Fig. 2. Three slices of the tem.

Ill. DISCUSSION

2
M0y = 532 S (1 Minfz (- 17+ [k (- D%+ [y + - P+ [+ D, (5)
Tk, me1

[y + Dy [x+ (= D)

2
HyX,Y,2) =~ 0 3 (= gyketsm

47\ =1 |y + (= D'yl |x+ (= 1)y
X+ (= D% - [2+ (- D) }
t , 6
e '{ v+ - Diygl - \Dcr - D5+ [y + - Dy P+ [2+ - D7 ©
2
H,(x,y,2) = %’ > (=0 MIndx+ (- DM+ VIx+ (- D% P+ [y + (- Dy P+ [2+ (- )™z 13 (7)
Ty |, m=1

The presented analytic solution applies to a sample withV. SUMMARY

constant magnetization. For instance, this is the case for a In summary, we present a derivation of the components
system _W'th remanent magneﬂzaﬂm close to saturaﬂoh of the magnetic field of a permanent magnet with cuboidal
magnetizationMs. Our approach yields an error that in- geometry. We compare the calculated field values with nu-
creases with the differenckM =M, —M; between remanent  merically obtained data. The analytic solution is the basis for
magnetization and saturation magnetization. For small diﬁ:erquantitative MFM, as the magnetic Stray field of the Samp'e
encesAM, the relative errors of the components of the mag-and their derivatives can be calculated fast and accurately.
netic stray field are approximately given & /M.,

For comparing the derived analytic expressions with nu-
merical results, we calculated the magnetic flux derBityf ACKNOWLEDGMENT
a bar magnet along a line=z on its surface(y=yy,) as de- The authors want to thank H. EngéTU Berlin) for
scribed in Ref. 10. The magnetization wisg,=870 kA/m fruitful discussions.
and the dimensions of the permanent magnet 20 mm
X 40 mmx 20 mm. Figure 3 shows the resultant magnetic

. . . APPENDIX
flux densities obtained by a finite element metlifsdm Ref. . . .
. . . By transformingd/ dy— —al dy; in Eq. (4) and integrat-

10) and by employing Eqs{S)—(?). Our an.alytlc expressmns. ing with respect toy;, we obtain the integrand in its integra-
do not allow the continuous computation of the magnetic;n, jimits
flux density on the surface of the magnet, because of the

undefined corner poinfé.Therefore, we performed the cal- d=- %fxb fzb { 1
culation in the near vicinityy=y,+&;e=10"7%,) of the sur- Am ) J o L V(X=X)%+ (Y +yp)? + (z- 2)?
face. 1

Furthermore, we compared the results obtained from the - > > z}dxidz. (A1)
analytic expressions with a calculation performed with the VX =X)"+ (y = yp)+ (2= 2)

bar magnet calculator from Integrated EngineeringBy taking Eq.(1) into account, we derive foH, a sum of
Software!? Using the same geometry as in Fig. 1 we ob-four terms due to the integration limits in theand they
tained coinciding resultésee Table )l direction
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1.04 & Finite element method |
—— Analytic solution

Resultant magnetic flux density B, [ T

0 0 20 30 40 50
distance R [mm]

FIG. 3. Comparison of the resultant magnetic flux density along axine
=z on the surfacéy=y;) of a bar magnet. Dots: finite element methaél
Ref. 10 and solid line: analytic expression.

J Mg

He== T == - s i8], (A2)
with
z dz
Dt = f T )2 — 2 -
4 XX+ (Y 2y + (2= 2)

Equation(A3) can be integrated with respect zoresulting

in Eq. (5). The structure of the expressio, and H, is
symmetric inx andz due to the choice of the magnetization
in they direction. The deduction of the expression kyis
achieved by changing the integration order compared to the
FIG. 2. Magnetic field of a bar magnet: the three plots are cuts through théntegratlon Ieadlng . . . .
three-dimensional vector field at the positiors=2x,, z.=2z,, and y,= For theH, component the expression remains compli-

-2yp, respectively. These positions are indicated with respect to the bacated. With Eqs(1) and (A1) we obtain
magnet in the sketch on the top.

TABLE |. Comparison of the components of the magnetic stray field calculated from{&g€7) (AS) for the
cuboid(xy,Yp,2,)=(4,10,2 with a remanent magnetization of 796 kA/m at positier(x,y, z) with the values
obtained by a finite element calculati0REM) available from Ref. 12.

x y z B(mT) By(mT) B,(mT)
112.814 59.737 86.680 AS
126 L1y, 1.1z 112.811 59.723 86.679 FEM
. ) ) 7.268 8.330 3.892 AS
b Yo % 7.268 8.330 3.892 FEM
39.413x 1073 58.473x 1073 19.740% 1073 AS
10%, 107 10z, 39.413x 1073 58.473x 1073 19.734x 1073 FEM
180.916 114.796 0 AS
136 L1y, 0 180.916 114.765 0 FEM
2%, 2y, 0 8.400 9.935 0 AS
8.400 9.935 0 FEM
42.985x 1073 65.197x 1073 0 AS
10% 107 0 42.985x< 1073 65.197x 1073 0 FEM
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N
% y’z)___yq) = f Lb [(x=x) +(y}:rys;g+(z—a)2]3”2 [(x- X.)2+(yy yZI)DZ+(z 2?3 ez
Mo [* Y+ X+ Xp X~ Xp
T an -z v+ +(z- zi)2|: VX +Xp)2 + (Y +yp)2 + (2 2)° ) V(X =Xp)2+ (y +Yp)2 + (- Zi)2:|
Y [ X+ X - X~ % } dz.
(Y=Y + Z=2)* | N(x+ %2 + (Y = yp) 2+ (2-2)7  V(X=x)2+ (Y~ yp)*+ (2= 2)?

This integral is still analytic and the result is given in Ef).
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