1. Home
  2. Science
  3. Research Topics
  4. Hybridizing light, matter, and sound

Hybridizing light, matter, and sound

SAW-modulated emission of trapped polaritons

Interactions between photons, excitons and phonons in small volumes open a way to realize novel hybrid architectures. We develop hybrid (Al,Ga)As microcavities for the coupling of GHz vibrations, quantum well excitons and optical photons. On the one hand, the strong light-exciton coupling, leading to exciton-polaritons, enhances the coupling to phonons. On the other hand, it allows us to exploit the long temporal coherence of polariton BEC condensates, which exceeds the phonon oscillation period. With this novel platform, we aim to explore fundamental physics of resonant polaromechanical metamaterials based on confined, strongly nonlinear-driven dissipative systems. The research could lead to the development of new optical devices (e.g., polarization modulators, synchronized inversionless lasers) operating at tens of GHz.

Current focus points

  • GHz-polaromechanics and phonoritons: Polaritons in hybrid MCs enable access to active optomechanics, where excitons enhance coupling between GHz phonons and optical photons, which leads to the formation of hybrid phonon-exciton-photon quasiparticles - phonoritons.
  • Quantum phonons: Excitingly, going beyond 10 GHz will enable quantum regime with phonons in polariton microcavities at temperatures approaching 1 K.
  • Confinement for quantum polaritonics: We investigate sub-μm spatial traps for polaritons, which will allow us to reach single-polariton quantum regime.
  • Towards room-temperature: Coherent polariton phases in AlGaAs are typically limited to temperatures below 80 K. We use spatial confinement to boost the condensation temperature of polaritons GaAs.

Selected publications

Author: A. S. Kuznetsov, K. Biermann, A. A. Reynoso, A. Fainstein & P. V. Santos
Title: Microcavity phonoritons – a coherent optical-to-microwave interface
Source: Nat. Commun. (in press, 2023)

Author: D. L. Chafatinos, A. S. Kuznetsov, A. A. Reynoso, G. Usaj, P. Sesin, I. Papuccio, A. E. Bruchhausen, K. Biermann, P. V. Santos & A. Fainstein
Title: Asynchronous locking in metamaterials of fluids of light and sound
Source: Nat. Commun. 14, 3485 (2023)

Author: A. S. Kuznetsov, D. H. O. Machado, K. Biermann, & P. V. Santos
Title: Electrically Driven Microcavity Exciton-Polariton Optomechanics at 20 GHz
Source: Phys. Rev. X 11, 021020 (2021)

Author: D. L. Chafatinos, A. S. Kuznetsov, S. Anguiano, A. E. Bruchhausen, A. A. Reynoso, K. Biermann, P. V. Santos & A. Fainstein
Title: Polariton-driven phonon laser
Source: Nat. Commun. 11, 4552 (2020)

Author: A. S. Kuznetsov, G. Dagvadorj, K. Biermann, M. H. Szymanska, & P. V. Santos
Title: Dynamically tuned arrays of polariton parametric oscillators
Source: Optica Vol. 7 (12) 1673-1681 (2020)

Author: A. S. Kuznetsov, P. L. J. Helgers, K. Biermann, & P. V. Santos
Title: Quantum confinement of exciton-polaritons in a structured (Al,Ga)As microcavity
Source: Phys. Rev. B 97, 195309 (2018)

Related funding

  • (2022-Running) Deutsche Forschungsgemeinschaft (359162958)
  • (2018-2021) Deutsche Forschungsgemeinschaft (359162958)
  • (2018-2022) European Commission (EU) and Bundesministerium für Bildung und Forschung (BMBF) (EU-QuantERA Interpol / EU-BMBF 13N14783)